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Abstract

Current space exploration goals for NASA include planncdand proposed missions toasteroids. These
missions generally call for a period of orbital operations in closc proximity tothe asteroid, in sonic cases
coming within 2 radii of the asteroid, A challenge for the navigators of these missions is to predict the
orbital environmentabout the asteroid and to derive pre-mission plans for the control of these orbits. This
paper investigates the major perturbations asteroid orbiters will encounter over a range of relevant asteroid
817 €8,

The relevant perturbations acting on the asteroid orbiter arc due to the irregular shape of the asteroid,
solar radiation pressurc and the solar tide. The effects of these perturbations on the satellite osculating ele-
mentsare discussed in the context of the averaged liagrange Planetary equations. These averaged equations
provide accurate qualitative prediction of the expected satellite motion. Fxact solution of these averaged
cquations are possiblcm some cases. Additionally, the dynamical environment about au asteroid cau be
characterized by its shape, size and rotation rate. This characterization identifies regions of orbital stability
and tustability about the asteroid.

The effects of the solar radiation pressure and of the asteroid s} 1apc arc investigated in detail, as these
dominate over the effect of the solar tide in situations of interest. The solar radiation pressure perturbations
arc significant for orbiters about small asteroids. The effect of the asteroid shape is significant for allorbiters
within a fcw asteroid radii and dominates over the other effects for larger asteroids. For intermediate sized
asteroids, both the solar radiation pressure and the asteroid shape mustbec taken iuto account.

The study carried out in this paper is significant as it addresses the non-Kepleriannature of satellite
orbits about asteroids. For any potential orbiter mission to an asteroid, these effects must be seriously con-
sidered during pre-flight navigation and mission planning. This paper provides an analysis and methodology
which allows for qualitatively correct pre-flight planning.

1 Introduction

Theinvestigation of asteroids is of interest tothespace science community for several reasons, the
most compelling being the relatively unknown properties of asteroids and the insight this information
would provide into solar system formation aud history. Asteroi d orbiters arc the most cfficient
platforin with which to investigate asteroids as they allow for a loug period of observation and
characterization and eventually enable an asteroid landing for direct sampling. The navigation
methodology used inapproaching, characterizing and orbiting an asteroid is detailed in Reference
[10]. The current paper discusses the major perturbations which act onan asteroid orbiter and their
effect onthe orbit.




By necessity, the discussion in this paper is forced tocover a rangeof asteroid sizes and
heliocentric. orbits, Thus the formulation of these effects is kept general, although specific examples
arc used throughout. The discussion is limited to the major perturbations acting on the asteroid
orbiter. These perturbations 1nay be evaluated given ground based observations of the asteroid. Such
an analysis is useful as it describes the basic. motions orbiters will follow. Higher order perturbation
theories will begin from these solutions once the asteroi d is encountered and characterized. 'The
validity of these results arelimitedto less than 100 asteroid radii in gencral. For radii larger than
this, the assumptions made in deriving the results should be verified for applicability.

2 Asteroid and Spacecraft Properties

For a specific mission, , the range of orbits for candidate asteroids is fixed by the mission paramncters
such as injection energy and mission duration. Still, candidate asteroids may have size differences
of an order of magnitude and the shapes of each asteroid will be unique. Also important is the size
and mass of the spacecraft, especially in the current age of smaller and lighter spacecraft designs,

2.1 Asteroid Size and Mass

Candidate asteroids for rendezvous and orbital missions have a large variation in size. Stated
candidates for planned and potential NASA sponsored missions include Nereus, with a radius <
0.4 kin, Eros with an average radiusof 10 km and Vesta with an average radius of 245 k. Thus
the radii of asteroids to consider range over 3 orders of magnitude.

The specific shape of an asteroid is easily specified as a tri-axial ellipsoid. Although the
actual shape will deviate from this geometrical figure, it is convenient to use this parameterization
in a prior-i studies when details of the asteroid shape are unknown, The tri-axial ellipsoid allows
for the inclusion of themajor components of the asteroid’ s non-spherical shape. Using this model
the asteroid size and shape is specified by the three major half-dimensions of the body, commonly
termed «, § and 4. These parameters are strictly ordered as a > 8 > 7.

The density of an asteroid, p, is a parameter which cannot be measured until actual encounter
with the body occurs and the estimation process begins. For our studies, we assume a density of
3.5 g/cc, although this will be uncertain to a large extent. For icy bodies, this density may be as
low as 1 g/cc, for iron bodics this density maybe much larger. This is an important parameter,
and given any specific. asteroid the literature should be investigated tosce what its mean density is
conjectured to be.

Given these parameters, themass constant s of the asteroid may be computed:

47 R
Ho= ~§Gpaﬂ'y )

Gis the universal constant of gravitation and has a value of G = 6.67259x 1078 cm3/(gs?). Another
parameter Of interest is the average asteroid radius, to be used in g calculations. ‘I'his is defined as
the harmonic mean of the three major axes of the asteroid:

a = (apy)'l? @)

Given average asteroid radii ranging from 0.5 to 250 ktn, the mass parameter will vary over
a range:

1.2 x 10'< < 153 km®/s? 3

Clearly, the relevant forces and their effect will vary over this range. In gencral, near-Earth asteroids
have j values ranging over 1 x 10"— 1 x 10°kin"/s?. Main belt asteroids of interest have s
values ranging over 1 x 10°—1 x 10km?®/s2.



2.2 Asteroid Orbits

The heliocentric orbits of asteroids also vary. in genera, asteroids of interest range from 1 to 3 AU.
This range docs not include al asteroids of interest, but should be sufficient for this discussion.

Given the asteroid semi-major axis, a quantity of interest is the rate of change of the asteroid
true anomaly, dcfined as:

VisAT )

\ 4
N R? @

Where fis = 1.3272 x 10" km®/s? is the gravitational constant of the sun, A is the semi-magjor axis
of the asteroid, ¥ isthe eccentricity of the asteroid and R is the distance of the asteroid from the
sun. If the asteroid is in a nearly circular orbit, the expression simplifies to the rate of change of the

meananomaly of the asteroid:
. e
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Using the astronomical unit as a length standard, Equation 5 may be restated as:

. 1
N = T degrees/day (6)
where It is now the semi-major axis of the asteroid cxpressed in astronomical units.
For asteroids in the ranges stated, this rate of change varics over:

1< N < 0.188 degrees/day @

2.3 Spacecraft Parameters

The spacecrafl parameter of interest is the arca to mass ratio for solar radiation pressure computa-
tions. Asteroid orbiters will in general be smaller and lighter than spacecraft designed for planctary
orbit. For definiteness, wc choose a particular value relating to a Discovery class spacecraft of effec-
tive area 5 m? and mass 160 Kg. Irom this wc define the area tonassratio, B = Area / Mass, or
I3 = 0.03125 m? /kg for our particular example. This value of the parameter is used throughout the

paper for definiteness of discussion.

3 Primary Forces

Other than the attraction of the asteroid gravity, there arc three primary forces acting on an asteroid
orbiter: solar tide, solar radiation pressure and asteroid shape.

3.1 Solar Tide

The magnitude and direction of the solar tide force, in an inertial frame centered on the asteroid,
can be given approximately as:

Fp = —NZr (1-3cos’S)r, ©)
Coss = 1;.1, ©)

where N is the truc anomaly rate of the asteroid about the sun, r is the radius of the spacecraft
from the asteroid center, rsis the unit vector from the asteroid center pointing at the spacecraft, ry
is the unit. vector pointing in the anti-solar direction and S is the angle between these two vectors.

Equation 8 is derived implicitly from the Hill equations of motion as stated in Reference [3].
Note that the distance of the asteroid from the sun and the solar mass is present implicitly through
the parameter N.



The equilibrium points associated with this force are at the position where the solar tide and
gravitational attraction of the asteroid cancel. Relative to the asteroid their coordinates are:
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where ¢ is the asteroid gravitational constant, For an asteroid with density 3.5 g/cc in an orbit a
1.5 All, these points lie at ~ 300& from the asteroid. This is further from the asteroid than will in
general be considered in this paper. In Reference [7] the effective radius for the sun to capture an
initially circular orbit in less than 20 years is given as 450&. ‘1'bus, the possibility of solar capture
will not be amajor consideration for short-term missions to asteroids.

3.2 Solar Radiation Pressure

Themagnitude and direction of the solar radiation pressure acting on an asteroid orbiter is expressed
inincrtial space as:

Fg = gry (1)
GyvB
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where GGy is the solar constant =~ 1 X10°kg km?€ 14 is the spacecraft area to massratio (defined
previously) and £ is the asteroid distant.efrolll the sun in kilometers. Using the astronomical unit
as a mcasure of length and the nominal value of B = 0.03125, the parameter g can he expressed as:

1
=1.389 X 1071%-~ km/s 13
where I¢ isnow the asteroid heliocentric distance in astronomical units. This simple relation assumes
that the solar radiation pressure force always acts in the anti-solar direction. A more sophisticated
model would aso include the orientation and the absorption and reflectance properties of the space-
craft.
Similar tothe solar tide, the solar radiation pressure force will leadto an equilibrium point

on the far side of the asteroid:
/1
Yp = = 14
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Assuming that the asteroid is in a 1.5 AU orbit, this cquilibrium point is located at = 125a3/2
km away from the sun. Additionally, this force will modify the solar tide equilibrium point on the
sun-ward side of the asteroid. For a 1 km radius astcroid, this point is pushed from 300 km to
1746 km towards the sun. For a 10 kin asteroid, this point is pushed from 3000 km to 3700 km.
Only for a 100 kin asteroid docs the effect of the solar radiation pressure become small, with the
distance being pushed from 30,000 ki to 30,600 km. Note that these numbers are dependent on the
spacecraft parameter B, and that for a smaller area to mass ratio, the effect of the solar radiation
pressure will decrease accordingly. Thissiimple analysis presages the results discussed in Section 8
whereit is seen that the solar tide only becomes significant for large asteroids.

3.3 Asteroid Shape

The force cffects due to a non-spherical asteroid shape are quite complex. The most eflicient manner
in which to characterize them is through a spherical harmonic expansion of the asteroid gravitational
field. Although such an approach is generally used in practice, it is not enlightening for pre-mission
planning purposes when there is no definitive estimate for the gravitational harmonics. A better
approach may beto usc closed forin expressions of knownshapes which approximate the asteroid



shape. Examples of these shapes include a tri-axial ellipsoid potential or a collection of point mass
potentials rotating in unison (Reference [6]).

The cffect of the asteroid shape upon an orbiter can bequite significant, as will be discussed
later. The major effects may be discerned by noting the asteroid Type (defined in Scction 7.2) and
the major gravitational perturbations which can usualy be characterized by using a second order
gravitational field. in many instances, for characterizing the mnaineflect of the asteroid shape, it is
convenient to use the primary oblateness term, Jz.

4 Coordinate Systems

Thereare two coordinate systems of interest in the study of this problem, one referenced to the
asteroid orbital plane, and the other referenced to the asteroid equatoria plane. These are referred
to as the Orbital system and the Equatorial system, respectively.

4.1 Orbital System

Thissystemisthe preferred coordinate frame for discussing the solar effects. solar radiation pressure
and solar tide.

Define the & axis along the anti-solar unit vector vy at the initial epoch, as time progresses
the r, vector willrotate in this frame. The # axis is taken to be normal to the asteroid orbit planc
and the y axis follows from the usual construction and lies perpendicular to thesun line and in the
orbit plane, pointing in the direction of travel. Assume that the satellite is described at any time by
its osculating orbit elements: a,c, ¢, w, €2 and 7. The orbita element @ =w £Q is aso used where

appropriate,
The node of the orbit, €2, is mecasured in the z-y plane, increasing in the counter-clockwise
direction from the & unit vector and is specified by the unit vector:
rg = cosfdE+ sinQy (15)
T'he unit vector normal to the orbil plane is specified as:
Y, = dnflsinid—cos§2Sinig + cosiz (16)

The vector transverse to both the node and norma vectors is defined as:

rp = IpXro
= —sin{2cosiZ+ cos€cosiy 4 siniz 17)

Given these vectors, the periapsis unit vector is;
r, = coswrg+sSinwry (18)

Introduce the notation u = w 4 f, where f is the true anomaly. Thenthe satellite is located by the
unit. vector:
Ys = COSurg - sinuryp
= [cosucos 2 -sinu sin Q cos 1] x (29)
+[cosu sin 2 -sinu cos 2 cosijy4sinu sin iz

Finally, define the unit vector aong the down-track direction of the satellite orbit:

Ty = ThXr,
= -[sinucos§ +-cosusin§lcosi]d (20)
- [Sin usin §2- cos U cos Q cosi]y + cosu Sin i2



This completes the specification of the satellite orbit. in this system the anti-solar vector x,
is specified as;

vy = cos(N)i + sin(N)y (21)

Where N is the true anomaly of the asteroid orhit, and can found by integrating Equation 4.

42 Equatorial System

This coordinate system is preferred for describing the eflect of the asteroid shape on the spacecraft
orbit. The 2, axis is defined to lie aong the mean asteroid rotation pole w. The &, axis is defined
to liein the asteroid orbital plane, and the §. axis is defined as usual.
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The spacecraft position in the equatorial coordinate system is defined with the previously
stated vectors in liquations 15 - 20, with &, g, and Z replaced with &, ., and Zerespectively.

The mean asteroid rotation pole w is located in the orbital coordinate system by its node
2, and inclination i,. Given this, the equatoriad coordinate system unit vectors are related to the
orbital coordinate systern unit vectors as.

2o = cosQy+snQ,y (24)
Je = —SiNE, o8ty d +COS Y, cosiy Y +SiNin2 (25)
2, = SNy SiNiy & — COS Yy, SiNdy, § 4 COSiy, £ (26)

5 Solar Tide

Previous investigators have derived the averaged lLagrange equations for this force. A complete
derivation of thiseffect is given in Reference [4]. Theeflect of the solar tide on the osculating
elements is of order N?/n. As will be seen, these effects only become significant for spacecraft at
large distances from an asteroid.

6 Solar Radiation Pressure

This force is gencrally small for orbiters and is included in the higher order perturbations. Since
asteroids arc small, however-, this force grows in importance and is sometimes the dominant force.
Themain effect is studied by averaging over the satellite orbit, athough the averaging removes some
eflects of interest. In this analysis we assume that the orbiter is not “blown away” by the radiation
pressure, which could occur for large I8 values, very smnall asteroids or at large distances from the
asteroid.

6.1 Center of Orbit Offset

Oncdynamical effect of the solar radiation pressure which averaging removes is the offset of the
orbit plane from the center of the asteroid. This effect is largest when in a solar plane-of-sky orhit.
A simple anaysis shows the magnitude of this effect.

Assume that the satellite orbit is nominally circular and in the solar plane-of-sky. Then the
solar radiation pressure will act normal to the orhit plane with a constant force and push the orbit
planc so that the asteroid center no longer lies in this plane.




in inertial coordinates, the potential force for this offset can be expressed as:

UQ) = - o @)

where ¢ is the ofl’set of the orbit center aong the sun-ling, a is the radius of the circular orbit, g is
the solar radiation pressure force and y is the gravitational constant of the asteroid. The rotation
of the sun has been neglected for this simple analysis, The offset coordinate ¢ then obeys a second
order differential equation:

S LS (28)

Ducto the smal magnitude of the g term, the offset ¢ will in genera] be small, and hence alows for
the approximation:

= T, (29)

a

This equation describes an oscillation about anequilibrium point,. The equilibrium point
characterizes the average offset of the orbit fromthe asteroid center and is:

ga®

G = = (30)
Yoran asteroid in a heliocentric circular orbit at a radius of 1.5 All, this becomes:
3
/a
(. ~ 6.3 xilO(E) ki 31)

in general, this offset distance canbe used as a measure of whenthe averaged equations of motion
begin to break down. Taking the spat.ccraft, to an orbit at 25 asteroid radii yields an offset of 1 kin.
Forsmall asteroids, this effect can become quite large. For example, should the asteroid be only 1
kmin radius, the orbit plane will no longer contain the asteroid! Should this offset become large
with respect to the asteroid radius, the averaged equations should be reconsidered and compared
against the. numericaly integrated equations of motion to ascertain their validity.

6.2 Averaged Solar Radiation Pressure

The Lagrange planetary equations describe the variation of the osculating orbit elements of a body
when under the influence of additional forces. The solar radiation pressure force may be formulated
as a disturbing potential to the central attraction of the asteroid:

R = —rF, -r (32
—gr [cos ucos(§2— N) —sin usin(§2 -- N) cos ] (33)

il

Define a new element A = 2 — N, This is the node of the orbit measured in the orbital coordinate
system rotating with the sun line. This potential is averaged over the mean anomaly to yield the
sccular potential:

3 . . .
Rs = —igac[cosw COS A ~sinw sin A cosi] (34)

Using this disturbing potential in the Lagrange eguations leads to the equations for the secular
effects (sce Reference [8]):

dA Coe .. :
7 T i sin(A) - N (35)



o= oo coswsinisin) (36)
%; = ~CyV/1~ e2[sinw cos(A) + cosw cos i sin(H)] 37
‘jl‘t" - _5@ [cos wcos(A) - Sinw cos i sin(A)]

—cost (%? + N) 39

where the parameter Cy is defined as.

3g [a
Cy = 9 7 (40)
and N is found by integrating Equation 4.

Note that Equations 35-38 arc fully integrable, although the form of their solution cannot be
reduced to simple expressions inmost cases. The description of the integrable solution is worked out
in Reference [8]. In this solution the averaged elements are reduced to a solution with two frequencies
on a torus. The solution has degenerate frequencies, i.e. the two fundamental frequencies of the
solution have the samec period. ‘1'bus, all solutions to Equations 35 - 38 are periodic with the same
period. The two oscillations do not move uniformly withrespeet to each other in time, however.
Furthermore, as will be discussed later, the period of the solutions is independent of the initial
conditions, and only a function of the asteroid heliocentric orbit, the solar radiation pressure force g
and the semi-major axis of the asteroid orbitera (which is conserved in these averaged equations).

It is important to note that these equations are averaged over one orbita period. Hence in
the numerical solutions to the full equations of motiontliere are significant short-period oscillations.
Should the amplitude of these oscillations grow large, the applicability of the averaged equations
will bresk-down. This generaly occurs when the radius of the orbit about the asteroid grows too
large.

Thedynamics of an asteroid orbiter under solar radiation pressure alone are now discussed.
This discussion in divided into two cases, N = O and N # O. in the former case, the integrable
solution to the eccentricity may be simply stated. In the latter case, there arc a number of particular
solutions of practical intcrest.

6.2.1 Dynamics When N = O

This case is an idedlization and assumes that the asteroid rate about the sun is very smal. It is of
usc as it allows for a simple characterization of the solution for the eccentricity.
Two of the integrals of motion for Equations 35-38 in this case (N = O) arc:

ko= V1- ¢ sin(A) sin ¢ (41)
h = efcosw €OS A —sin W sin Acos i) (42)

Note that the following bounds and relations may be established:

I < 1 (43)
k] < 1 (44)
] 4]k < 1 (45)
2 2
[Snw cos A +coswsin Acosi)® = I»T—é—.&;% (46)




Using Equation 46, Equation 37 can be written interms of i,k and c aone
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where
cizzé [1+ 1% - K] - %\/(] ~ 024 (1 - k2)? --(1+ h2k? (48)
s
¢ = %[1 + h? = k7 +§\ﬂ1 = h)7 -i (1 k2)P -1+ h2%?) (49)

Assuming that €0) =e¢;,the equation may be directly integrated to yield the simple solution:
1
¢ = Sl el — (ef - ef) cos (2C1)] (50)

I is clear thate; < e <ey,. Note thatif both h = O andk = 1, then c,=¢;, = O, aud the orbit is
frozen into a circular orbit in thesolar plane-of-sky. Conversely,if h=1and k= O, then ¢; = ¢, = 1
and the orbit is adegencrate ellipse. Finally, if h= O and £# O, then¢g;= O ander= 1 aud the
eccentricity will vary between O and 1. .

The period of the cccentricity variation is 7p = n/Cy. Under the condition N# O, the
solution for the eccentricity becomes coupled with the angles, and its period of motion doubles,
although for N << 1 its motion will retain a characteristic doublec hump andwillapproach€r twice
in every oscillation.

The solution for the angles i, w and A cannot be expressed in such a simple forin. [louucls
oni and A may be found, however, using the integral k.Define the angle @k = arcsin k, then these
angles will be constrained to lie within the bounds:

i € (ag,m—ax) (51)
(ak) = C"k)
A € { or (52)

{ (2 — ax, 7+ ax)

Notethe interesting result for an orbiter withk, ks 0:the orbiter will not collide with the point
mass (e#1) and the angular momentuin vector will be bounded away from becoming normal to
the sun-line.

6$2.2 Dynamics When N# O

As noted previously, Equations 35-38 arestillintegrable. By proper choice of variables, the motion
canbe reduced to two oscillations, each with the samne period, Sce Reference [8] for further details
on this elegant solution.

When orbiting an asteroid, il is desired to keep the eccentricity from becoming large or varying
widely, as this may lead to collisions with the asteroid or bring the orbit close to the asteroid where
the higher order gravitational eflccts may perturb the orbit. For N = O the eccentricity was bounded
from above by v/1 — k2. Inihe full solution the eccentricity will in general vary over an interval
of the same approximate size. This is of concern to the orbiter navigation] team as it is au effect
which must be controlled and corrected for. Thus it is desired to find any particular solutions to the
orbiter equations which will guaranice that the cccentricily remains constant.

‘1I'here arc four such orbits where the eccentricity and the other osculating elements remain
constant on average inthe presence of the solar radiation pressure, These solutions arc frozen orbits.
T'wo of these orbits licinthe asteroid orbital plane, the other two liein the solar plane-of-sky.

I'irst, an important parameter to define is.

A = (53)




Note that, in teris of the elementary constants of this problem, this parameter may be expressed

as.
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Al] these parameters are constant for any given spacccraft, spacecraft orbit and asteroid orbit.
Significantly, this is true evenif the asteroid is in an eccentric orbit about the sun.

For an asteroid with an average radius of « in a heliocentric. circular orbit at 1.5 AU and an
orbiter withsemi-major axis a, the parameter may be expressed as:

A = 1.72\/?;% (55)

‘1’bus, for large orbits A becomes large and for large asteroids A becomes simall.

The solar plane-of-sky solutions have their angles specified asi= 7r/2 and sin wsin(A)=— 1.
This directly implies that w = +7/2 and A = :x/2. Thusthe orbit angular momentuin vector
cither points towards or away from the sun and the periapsis lies along the z-axis below or above
the asteroid, respectively. in other words, the periapsis is chosen so that the orbiter velocity points
along the asteroid’s orbital motion about the sun.

Substitute the above angles into Equations 35 - 38 to find that all the. equations for the
osculating elements arc zero except for A:

: ()‘ € .
,\ = if\* -— N 56
T (56)
The eccentricity which zeroes out this equation is:
1
[ = ————r—z— 57
’ V14 A? 7

Note that this eccentricity is constant even if the asteroid isin an elliptic orbit about the suu.

For larger asteroids, this eccentricity approaches 1, whereas for larger orbits about an asteroid,
the eccentricity approaches O.

The asteroid orbital plane solutions have an inclination of eitheri =0, «. If { = O, then choose
W + A=m,if i =7, thenchoose w — A = O where the quantity @ =w 3 XA is the orbit periapsis in
the orbit a reference frame measured from the anti-solar vector. in other words, the orbit periapsis
is chosen so that the orbiter velocity points against the asteroid orbital motion.

Substitute the above angles into Equations 35- 38 to find that all the equations for the
osculating elements are zero expect for @:

N ) .
- Gy (59)
The eccentricity which zeroes out this eguation is:
A
(o3 = —— 59
WY (59)

‘I'bus, for larger orbits, this eccentricity tends to 1, whereas for larger asteroids, this eccentricity
tends to O.
For either solution to be of practical intcrest requires that the eccentricity not be too large.
Note that ¢;=€2=1/4/2 when A = 1. From Equation 55, the size of the orbit necessary for this
equality is:
aS

For orbits alarger scmi-major axis, the solar plane-of-sky solution with e; is preferred (as it is more
circular), whereas for orbits with a smaller semi-major axis, the orbital plane solution with ¢z is
preferred.

10




6.2.3 Period of Oscillations

An item of practical interest isthe period of the integrable motion, as thisindicates the frequency
of correction which must be applied to the orbit. It also indicates the severity of the eflect if not in
afrozen orbit: the longer the period, thelonger until a correction must be made.

Fromn Reference [8] the period of the integrable motion is:

fI'P = T pTmme (61)

I'or an orbit at altitude a about an asteroid of uniform radius & at 1.5 AU from the sun, the
value of this period is:

Tp -————6—98~::—_ days (62)
/11 3aja?

As indicated carlier, the general eccentricity variation has a characteristic ‘{double hump”
where the eccentricity becomes large twice every period. ‘1'bus, theeccentricity may change from
O to 0.5 over a quarter of this period. For an asteroid of radius 1 kin and an orbit atitude of 20
kin, this characteristic time is 21 days. For an asteroid of radius 10 km and an orbit altitude of
50 km, this characteristic time is 155 days. Thus, for a smal asteroid, this is an important eflect
which must be controlled frequently, while for a larger asteroid, this effect must not be controlled
as frequently.

7 Asteroid Shape Effects

The generic shape of an asteroid is non-spheroid in genera] and can usualy be approximated by a
tri-axial dlipsoid. The distorted shape of an asteroid can have severe consequences for the dynamnics
of a satellite orbit within a few radii of the body ant] will have significant consequences for the
dynamnics of a satellite within = 10 radii of its body. In this section wc give a brief overview of how
an asteroid may be characterized in terms of its shape and what the major effects of its shape on
the orbit dynamics are.

7.1 Asteroid Characterization

Assume, for simplicity, that the asteroid may be characterized as a constant density tri-axial ellipsoid.
This is a general model, as by varying the three serni-major axes of the ellipsoid the asteroid shape
can be specified as a sphere, pancake, cigar or any intermediate shape. ‘1'bus, the tri-axial elipsoid
model alows the analyst to approximate the major shape distortions of the body in terms of a
simple model.

Given the three semi-~ngjor axes of the astcroid: o, 8 and «, given in order of their size, the
totalm ass of the asteroid may be computed from Equation 2. The dimensions «, 8 and v of the
asteroid may usually be measured, or bounded, from Earth-based observations. The mass is still an
uncertain paramecter, however, as the uncertainty in the density of the asteroid may often be quite
large, athough estimates on its nominal value do exist (2.6 g/cc for C-type asteroids and 3.5 g/cc
for S-typc asteroids, Reference [1 O]). Another paramecter of iinportance is the rotation rate of the
asteroid, wa, or the period of one rotation, 27/w4.T'his parameter may also be measured using
ground-based observations, Given these parameters, the generic. dynamics which an asteroid orbiter
will encounter can be described. This alows for pre-mission planning based on a more realistic
model of the body, although mission plans cannot be finaized until the actual body parameters are
estimated upon rendezvous with the asteroid.

The dynamics fan asteroid orbiter can be discussed completely, with the tri-axial ellipsoid
formulation, using three dimensionless parameters:

b= s (63




g =

¥y o=

(64)
(65)

*iRvelw

Note that ¥ < ,3 < 1 in general. The parameter éis the ratio of the gravitational attraction at the
long end of the ellipsoid to the centripetal acceleration at the long end, assuming the bod y’s mass
is concentrated at the ellipsoid center. The parameters B and ¥ are a mcasure of the ellipticity of
the tri-axial €lipsoid,

The equations of motion for the orbiter about a tri-axial €ellipsoid model of an asteroid are
most casily stated in a coordinate frame rotating with the asteroid. Note that this assumes that
the asteroid isin principal axis rotation. The expression of the potential of the tri-axialellipsoid is
interms of éliptic integrals. See Reference [9] for a complete derivation of these equations and a
description of their proper-ties.

Orbiter motionabout an steroid can be characterized in two basic ways. The first way is an
evaluation of near-synchronous motion about the asteroid. This investigates the satellite dynamics
when in or near a 1:1 resonance with the asteroid rotation rate. The characteristics of motion in this
reghme can vary markedly depending on the asteroid parameters. The second way is an evaluation
of motion when not in near-synchronous motion shout the asteroid. in these cases, the satellite
dynamics can be understood by approximating the asteroid with an oblate spheroid. This case is of
nnportance when designing the nomina orbital phases about an asteroid.

Another way in which to characterize the gravitational effects of the asteroid shape is hy spec-
ifying the 2nd order gravitational harmonics, C,=—J2 and C22. The J2 coeflicient characterizes
the oblateness of the asteroid shape and, assuming a tri-axial élipsoid modecl, iS computed as:

]
J o= qpaale’1pt - 27) (66)

The parameter is bounded in general as J,< 0.2,amore redlistic upper bound would be to take
J2 < 0.1.T'he C2z coeflicient characterizes the ellipticity of the asteroid equator and for a tri-axial
ellipsoid is computed as:

Cyy = *']”* (012 - 52) (67)

In genceral, Coy < 0.05.

7.2 Near-synchronous Orbits

The first characterization of an asteroid is the deterinination of the stability of synchronous orbits
in the asteroid’s equator. For larger bodies, such as the Earth or the major planets, where the body
shape is nearly spheroid, there are 4 synchronous orbits inthe equator of the body, two of these
orbits are stable and two arc unstable. In the planetary case, motion near thestable synchronous
orbits will oscillate about the orbit, whereas motion near the unstable synchronous orbits will tend
to drift away in longitude only, the motion being stable in the radial direction in general (Reference
[1]).

When considering orbits about an asteroid, these 4 synchronous orbits still exist, but their
stability prop erties may have changed. in particular, if the asteroid shape is distorted enough, the
2 stable orbits become unstable. This signals an important eflect on the general dynamics of ncar-
synchronous orbits about the asteroid, as the instability in these two synchronous orbits acts in
the radial direction and may cause an orbiting satellite to crash on the surface inshort time spans.
Given thenon-dimensional parameters of au asteroid, the synchronous radius will be close to:

syne = dé]ls (68)
As described in Reference [9], the dynamics about asteroids which have 4 unstable synchronous

orbits are different than the dynamics about asteroids which have 2 unst able and 2 stable orbits.
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Given the three parameters é,% and B,it is possible to determine the asteroid’s “Type”. The
designation used here is that an asteroid with two stable and two unstable synchronous orbits is of
Type 1, while an asteroid with four unstable synchronous orbits is of Typell. ‘I'he computation of
an asteroid's type involves the evaluation of au agebraic inequality involving elliptic integrals. Scc
Reference [9] for a detailed discussion of the evaluation of the asteroid type. Figurel is a plot giving
sufliciency conditions for an asteroid to be of Typell.lf the values for 6 and 2 lie under the curve,
then the asteroid is of Typell for al possible values of the smallest dimension 4.1f the values lie
above 1this curve, then the asteroid with v = S isof Type 1. However, there inay be values of 4 which
are dill small enough for the asteroid to be of Type 11.
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Figure 1. Sufliciency Conditions For Typell Asteroids

Given the asteroid type, the stability and safety of near-synchronous orbits may be evauated.
If the asteroid is definitely of Type 1, then synchronous orbits may be of scientific interest as they
allow for long dwell periods over certain locations on the asteroid surface. Due to the perturbations
of theactual gravity field, additional design and control must be performed to ensure the stability
of the orbit. However, there will be no major instability effects which must be fought.

If the target asteroid is determined to be of Type 11, then it becomes imperative to avoid the
strong instability associated with near-synchronous orbits. The strength of this instability is due to
the nature of the two, new unstable synchronous orbits. Unlike the previous unstable synchronous
orbits, which have real characteristic exponents and hence arc hyperbolically unstable, the new
unstable orbits have complex characteristic exponents and hence the unstable manifold spirals away
from the orbit in phase space. This spirad motion leads to a large variation in the orbit radius and
quickly brings the orbiter to a closc flyby or crashing tragjectory. 1f the satellite orbits arc far away
fromthe asteroid (usualy further thau 3 or 4 radii), the orbit will not suffer the instability effects.

If the mission plan calls for the spacecraft to orbit within 3 or 4 radii of a Typell asteroid,
which is in general close to the near-synchronous orbit radii, a strategy of orbiting the asteroid in
retrograde orbits must be followed. Such orbits alow the spacecraft to achieve low altitude orbits
without becoming synchronous with the asteroid rotation rate. Reference [9] presents an example
of afamily of stable periodic. orbits which are retrograde about a Typellasteroid. This family of
orbils exist at arbitrarily low altitudes about the asteroid.
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Note that the instability of near-synchronous orbits affect al direct orbits shout a Type 11
asteroid, and not just the equatorial orbits. ‘1’bus, near-polar orbits should also be treated with
care. Although they may technicaly be “retrograde”, the instability effects may still affect them,
especidly if theyare close to a 1:1 resonance with the asteroid rotation rate.

Sce I'able 1 for a brief list of characteristics of somec asteroids of current interest,, Observe
that most of these asteroids arc of Typell.

Name o B 5y 27 Jw 8 ¥ 6 Type | J, | C22
(km) | (km) | (km) | (hours) || ) | (-) | ()

Vesta | 265 | 250 | 220 53 || 0.94 |0.83 | 7.06°|| ! .051 | .006

Ida 26.5 115 9.0 5 0,43 | 0.34 | 1.18 11 .095 | .041

Eros 20 7 7 5.27 0.35 | 0.35 | 1.00 1] .088 | .044

Gaspra 9.5 6 55 7 0.63 | 0.58 | 5.75 11 .072 | .030

‘Jable 1: Paramecters and Shape Characterizations for Soine Asteroids of Interest

It should be cautioned that for cither I'ype Tor 11asteroids, synchronous, near-circularpolar
orbits arc unstable in general. ‘] ’his instability acts on the orbit eccentricity. For Type 1 asteroids,
the region of instability tends to be small and easily avoided.

7.3 Asteroid Oblateness Effects

If the asteroid is of Typel or if a retrograde orbit strategy is taken about a'l'ype 11 asteroid or if the
orbit radius is far from the asteroid, then the main eflect of the asteroid shape on the orbit becomes
the oblatencss effect. For Type 1 asteroids, thisis because these asteroids tend to be less distorted
in the equatorial plane and oblateness is the largest effect. For Type 11 asteroids, which may be
quite distorted in the equatorial plane (have large C22 values), this is only true if the satellite is in
a retrograde orbit about the asteroid or is far fromnthlieasteroid. For 1'ypell asteroids, following
such orbits effectively performs a spatial average over the asteroid cquator, reducing the dynamical
eflect of the asteroid’s shape to an oblateness effect.

Numerical simulations of such orbits show that oblateness is a significant effect, and that
retrograde orbits shout Type Il asteroids canbe reliably predicted using the theory of orbits about
an oblate spheroid. Properly, to introduce such an approximation, the asteroid should bereplaced
with an oblate asteroid with the samecinassand an average equatorial radius between the largest
and smallest equatorial radii. Reference [2] investigates orbits about anoblate spheroid.

A further simplification replaces the effect, of the oblate spheroid by the J, oblateness term in
the asteroid gravitational potential. For motionin a potentialwitha Jp term, the averaged Lagrange
Planctary equations may be computed as (Reference [5]):

aQ C

WS e (69)
dw Cs D .4 .
di . —(1—:—62—) [2 sin? §{— 2] (70)
(71)
where 7, ¢ ancl a suffer no secular effects and
, 3ndya?
Js = ———2—02—~ (72)

The osculating clements are referenced to the lquatorial coordinate system, as described previously.
As is classically known, the sccular effect of the oblateness acts primarily on the orbit node and
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periapsis.  Although theorbitsemi-major axis, eccentricity and inclination remain constant on
average, there are short period variations in al of thescclements.

Using a tri-axial elipsoid model of the asteroid, the J,valueis computed using Equation 66.
A smentioned earlier, the maximum limit on J,is 0.2, although a more practical limit is totake
J,< 0.1.The size of the J,term for an asteroid is in general quite large, as compared to this term
for planets.See ‘1’able 1 for Jvalues for the asteroids listed there. Compare these to the J, value
for Saturn, 0.016, which is the largest among al the planets.

Taking a maximum value of J,= 0.1, an asteroid with average radius & and a circular orbit
with semi-inajor axis a, the secular rate of precession willbe on the order of

S\ 72
o~ 734 (%) degrecs /day (73)

Note that this is a maximum value, as the precession rate is multiplied by a reducing trigonometric
factor. For a 10 km orbit about a 1km astcroid this rate is 0.23 degrees/day, for a 50 km orbit
about a 10 km asteroid this rate is 2.6 degrees/day, and for a 200 km orbit about a 100 ki asteroid,
this rate is 65 degrees/day. ‘1'bus, for orbiters at a fcw asteroid radii, the effect of the precession can
becomne very large.

Due to the large dynamical effect of the asteroid oblateness,it must be accounted for in the
pre-mission planning of the orbital phase, It aso places restrictions on which orbits arc feasible to
maintain and control. As an examnple, under such large precession rates, it may not be feasible to
keep au asteroid orbiter closc to the Earth plane-of-sky, as the orbit will be moved out of this planc
under the precession effects. To maintain such an orbit geometry may require mancuvers every fcw
days. It is important to note that the precession of the orbit occurs about the mean rotation pole
of the asteroid. The orientation of the mean rotation pole of the asteroid will in genera] point in
an arbitrary direction for any given asteroid. It is essential that the rotation pole orientation be
known prior to rendezvous. Lack of this information would complicate the pre-mission planning of
the orbital phase.

8 Combined Effects

In this section, the relative strength of the three major force perturbations acting on an asteroid
orbiter arc compared. The strength of these forces arc incasured by their cocflicients in the averaged
l.agrange planetary equation. Comparison of their ratios indicates which forces dominate in which
regions.

Define the following characteristic “frequencies” for the solar tide (C}), solar radiation pressure
(Cy) and asteroid shape (C;):

Nz
(/‘1 = T (74)
., 3 gna?
‘g 2/1 (75)
; 3nJoa?
s = Toqi (76)

Thesc are the frequencies identified with the averaged Lagrange planetary equations for eachof the
major effects considered in this paper. ‘1'heir size represents the magnitude of the effect they have
on the osculating elements.

For comparison purposes, assume a circular asteroid orbit at 1.5 AU, the nominal value of
the spacecraft parameter B = 0.03125 and J, = 0.1. Also, assumc that the mass of the asteroid is
computed using an average radius & and that the spacecraft is in a circular orbit with semi-major
axis a.
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Under thesc assumptions, the frequencies take on the characteristic values:

a 3/2
C; =594 x 10-(5) degrees/day (77)
a 5
Cy = 0.46 a-?/;ﬁ;egrees/day (78)
Js = 734 (3) degrees/day (79)

The relative ratios of these parameters arc then:

Vg -4 al
= = 63x107" — (80)
s @
G -4

- &~ 1.3 x10 81
c, 3 a (81)
G o 81 xio-s, & (82)
A @)

The regimes of dominance of the diflerent eflects arc found by identifying the point where
theratios arc equal to 1, For ratios Icss than 1, the eflect in the denominator dominates; for ratios
greater than 1, the effect in the numerator dominates.

For the relative strength between the solar tide and solar radiation pressure, note that the
solar radiation pressurc formally dominates when:

r-1 < 7700 kin (83)

This is well within the orbit radii assumed for this paper. Further, at such a distance from an
asteroid, the notion of an orbit becomes clouded due to the weakness of the gravitational attraction
of the asteroid. ‘1’bus, within the assumptions made for the current analysis, it is clear that the
solar tide effects arc subservient to the solar radiation pressure forces. When orbiting a large planct,
however, it is clear that the tidal forces may compete with the solar radiation pressure effects.

For the relative strength of the solar radiation pressure to be larger than the asteroid shape
cffect, the orbit semi-major axis must be:

a > 6.3a%1 (84)

For small asteroids (o« <2 km) the solar radiation pressure effect is clearly dominant for all but the
closest of orbits. Thus, the implementation of the frozen orbits about a small asteroid is feasible
and may be the desired approach.

For intermediate sized asteroids (2 < o < 10 k) the solar radiation pressure effect is of the
same order as the asteroid shape effect for orbits in the range of interest. ‘1'bus, design of orbital
missions should take this into account. Themajor effects which should be considered arc that
the frozen orbit design, which is feasible for the smaller asteroids, cannot be maintained without
correction.  The genera] effect of the asteroid shape will be to precess the angular momentum
aboul the asteroid rotation pole and to cause secular change to the argument of periapsis. ‘J bus,
in order to take advantage of the constant eccentricity property of the frozen orbits, correction
mancuvers must be performed periodically to reset the node and periapsis of the orbit. Conversely,
if a frozen orbit design is not implemented, the eccentricity of the orbit will have a secular increase
and must be corrected whenever it becomestoolarge. Note that, for a constant semi-major axis,
as the eccentricity incrcases so do the secular rates of change of the orbit node and periapsis in the
equatorial plane. g'bus, there is additional impetus to control the eccentricity to srnaller values.

For large asteroids (1O < a < 100 kin) the effect of the solar radiation pressure is clearly
dominated by the J2 effect. Thus,except for large orbits about the asteroid, the orbital phase
strategy may be planned considering the asteroid shape eflects only.
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Note that for the solar tide effect to dominate over the asteroid shape effect requires an orbital
radius greater than:

a > 26« (85)

‘1I'bus, as expected, the magnitude of the solar tide effect is the smallest of the three, except when
in very large orbits about the asteroid.

9 Conclusion

Based on the analysis in this paper, it is possible to characterize the major force effects an asteroid
orbiter will encounter during its nomina mission phase. Of the three candidate perturbations to the
asteroid’'s central attraction, only the solar radiation pressure and the asteroid shape are seen tobe
important. The solar tide has a relatively small effect as conpared to these forces, and must only be
considered once precision trajectory and orbit determination work is pa-formed. The solar radiation
pressure is important when orbiting small and intermediate sized asteroids, or orbiting any asteroid
al alarge distance. It can be a significant effect as it drives the eccentricity towards larger values.
The asteroid shape is important when orbiting any asteroid within a few radii, athough its effect
remains significant out to 10 asteroid radii. Furtherinore, when orbiting an asteroid within a few
radii, it is crucia to evaluate the stability of synchronous orbits. This can be done by computing
the asteroid type. If it is of Type 1, then near-synchronous orbits may be flown if proper control
and prediction is possible. If it is of Type 11, then near-synchronous orbits will be too unstable
to realistically control, unless a robust on-board autonomous navigation and control strategy is
implemented.

For orbiters at small asteroids, the solar radiation pressure will dominate, except when very
close to the asteroid. Thus the shape and tidal effects may be treated as small perturbations and not
accounted for in the primary mission plans. It may be feasible to implement frozen orbits designed
tocancelthe secular effects of the solar radiation pressure in this situation.

For orbiters at intermediate sized asteroids, both the solar radiation pressure and the shape
effects will be of the same order of magnitude for orbit radii of interest. Frozen orbits designed
for the solar radiation pressure will be affected by the precession of the orbit about the asteroid
rotation pole. Generally, the asteroid rotation pole willlie in an orientation which does not allow
the precession effects to be incorporated into the frozen orbit design. Additionally, the secular
motion in the argument of perigee will move the frozen orbit out of its preferred orientation. ‘J bus,
itmay not be feasible toimplement the frozen orbit design. Coupling between the solar radiation
pressure and the J,eflect must aso be modeled and corrected. Furthermore, if the asteroid is of
Type 11, there will be restrictions on the orbit placement due to the instability of near-synchronous
orbits.

For orbiters atlarge asteroids, the solar radiation pressure eflect is small and the asteroid
shape effects dominate the environment. If the asteroid is of Type 1, then there are no stringent
restrictions on the placement of orbits about the asteroid. If the asteroid is of Typell, then orbits
within4 asteroid radii should be retrograde. For both these cases, the effect of the asteroid oblateness
is large and will drive the design of the orbital phase of the mission. The presence of this effect
renders inertially fixed orbits unfeasible except for circular orbits in the asteroid equator or circular
orbits in polar orbits about the asteroid.
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